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A B S T R A C T

In the current biodiversity crisis, the increasing demand for effective conservation tools aligns with significant 
advancements in artificial intelligence (AI). There is the need for the development of more robust and accurate 
forecasting methods, ultimately enhancing our understanding of ecological dynamics and supporting the 
formulation of effective conservation strategies. This research conducted a comparative analysis of Local Poly-
nomial Regression (LOESS), Seasonal Autoregressive Integrated Moving Average (SARIMA), and Recurrent 
Neural Network (RNN) models for time-series prediction. Using a unique Long-Term Monitoring Program for 
island forest arthropods (2012–2023), wherein we selected the 39 most prevalent species collected using SLAM 
(Sea Land Air Malaise) traps within a native forest fragment on Terceira Island in the Azores archipelago. The 
results indicate that RNN outperformed LOESS in terms of both goodness of fit and overall accuracy. Although 
RNN did not surpass classical SARIMA in data prediction, it demonstrated superior goodness-of-fit on the training 
dataset. Furthermore, we investigated extinction and invasion scenarios within the Terceira arthropod assem-
blage, providing insight into broader implications and avenues for future research. This study discusses the utility 
and limitations of RNN models in biodiversity conservation through various scenarios. It contributes to the 
ongoing discourse at the convergence of conservation, ecology, and artificial intelligence (AI), highlighting 
advancements and innovative solutions crucial for the effective implementation of conservation strategies.

1. Introduction

The global biodiversity crisis has reached a critical stage (Driscoll 
et al., 2018), needing urgent action to address the multifaceted chal-
lenges. Across all biota and ecosystems, we are witnessing an alarming 
rate of species extinction (Pievani and Belardinelli, 2023; Urban, 2015), 
driven primarily by human activities (Borges et al., 2019; Cardoso et al., 
2020a; Chichorro et al., 2022; Rønsted et al., 2022; Strona and Brad-
shaw, 2022). The dramatic decline of biodiversity threatens the multi-
tude of species that are disappearing but also the stability of global 
ecosystems and the critical services they provide (Bellard et al., 2012; 
Eisenhauer et al., 2023; Van Genuchten, 2023). Concerted global efforts 
are needed to reverse this crisis, through active conservation measures, 

sustainable practices, and policy changes aligned to the preservation of 
biodiversity (Shivanna, 2020).

Predicting biodiversity patterns and trends is a highly complex task 
that fundamentally depends on understanding its temporal variability 
(Dornelas et al., 2013). Long-term biodiversity monitoring programs are 
indispensable tools for mapping changes over an extended period (Loh 
et al., 2005). Time series analysis is of immense value to biodiversity 
conservation, tracking and monitoring changes in biodiversity over time 
(Hamilton, 1994; Wauchope et al., 2021). They can reveal underlying 
ecological dynamics, such as population cycles or responses to climate 
change (See for example Basset et al.(2023), Fischer et al. (2023) and 
Lhoumeau & Borges, (2023)). Analysis may provide critical insights into 
trends and patterns in species populations, enabling scientists to predict 
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future shifts and potential threats (Dornelas et al., 2014). In addition, 
the information collected by these programmes can be used to make 
future predictions and help to design effective conservation strategies 
(García-Barón et al., 2021) and correctly develop ecological indicators 
that take into account how ecosystems change over time (see for 
example Tsafack et al., 2023).

Regression models such as Seasonal Autoregressive Integrated 
Moving Average (SARIMA) and Local Polynomial Regression (LOESS) 
have been widely used to analyse and predict ecological dynamics (Fox 
et al., 2022; Ledolter, 2008; Shyu et al., 1992; Sun et al., 2002; Yap and 
Musa, 2023). These modelling methods are built on pre-existing as-
sumptions and mathematical formulas, which can potentially lead to 
biases and limitations. This is especially the case when these models are 
selected without meticulous consideration or in situations where there is 
insufficient previous knowledge about the studied system (Dornelas 
et al., 2013). Prior information can be included in a theory-driven 
approach like Bayesian analysis. Bayesian methods have been shown 
to be powerful and flexible tools for ecological modelling and fore-
casting (Ellison, 2004; Hefley et al., 2017). However, their imple-
mentation often requires specific statistical skills and can be 
time-consuming, which may render them less suitable in situations 
where resources or expertise are limited. For those trained in Bayesian 
methods, their complexity and specificity can be seen as strengths, of-
fering robust frameworks for modelling complex ecological systems.

The integration of algorithms that operate without a priori assump-
tions has emerged as a transformative approach in scientific research, 
enabling a more expansive exploration of potential scenarios. By setting 
aside predefined constraints, these algorithms allow data to reveal 
patterns and relationships that might otherwise remain unexplored. It 
can broaden the scope of data analysis and serves as a foundation for 
refining hypotheses and testing other models. The insights obtained 
from such unconstrained analyses provide a robust framework for 
guiding further investigation, ensuring that subsequent models are 
informed by a comprehensive understanding of the underlying data 
landscape. This paradigm shift underscores the value of exploration as a 
precursor to hypothesis-driven science, fostering innovation and dis-
covery across diverse disciplines.

Being exclusively data-driven, deep learning algorithms operate in a 
more ’blind’ manner, employing iterative methods to identify features 
and discern patterns, making them less dependent on prior assumptions 
(Wu and Feng, 2018). However, while they minimise the reliance on 
explicit assumptions imposed by the modeler, they remain susceptible to 
biases intrinsic to the dataset itself. This differentiates them from 
traditional model-led approaches, where assumptions are more trans-
parent but may also limit model flexibility. Neural networks are a 
promising modelling tool for investigating complex temporal data 
because they can approximate any function due to the Universal 
Approximation Theorem (Hornik et al., 1989). Artificial Intelligence 
(AI) has recently been recognized as a transformative tool in ecology 
(Christin et al., 2019), particularly in conservation (Branco et al., 2023), 
where advancements in computer vision and bioacoustics have proven 
effective for species identification and ecological interaction analysis 
(Cardoso et al., 2020; Fujisawa et al., 2023; Hirn et al., 2022; Maglietta 
et al., 2020; Pichler et al., 2020; Wäldchen and Mäder, 2018). These 
applications largely rely on extensive datasets, which can be automated 
through Internet of Things (IoT) technologies (Besson et al., 2022; Kays 
and Wikelski, 2023; Wang and Bu, 2022). Additionally, AI has been 
applied in time series analysis and forecasting (Lim and Zohren, 2021; 
Masini et al., 2023), with studies exploring the strengths and limitations 
of neural networks in handling temporal data. However, the lack of 
comparative studies with other methodologies and the scarcity of tem-
poral data—often requiring significant resources for collection 
(Caughlan and Oakley, 2001)—remain key challenges in leveraging AI 
for predictive purposes in ecology.

Predicting biodiversity patterns and trends is a highly complex task 
that fundamentally depends on understanding its temporal variability 

(Dornelas et al., 2013). Long-term biodiversity monitoring programs are 
indispensable tools for mapping changes over an extended period (Loh 
et al., 2005).The Azores archipelago, located in the North Atlantic 
Ocean, is a unique island system with distinct conservation challenges 
(Myers et al., 2000; Neff, 2001). The islands are characterized by high 
levels of endemism and vulnerability to habitat degradation and bio-
logical invasions (Borges et al., 2022; Ferreira et al., 2016; Florencio 
et al., 2021).

A unique biomonitoring program (SLAM Project − Long Term 
Ecological Study of the Impacts of Climate Change in the Natural Forest 
of Azores) has been collecting biodiversity data in the Azores archipel-
ago since 2012. This program conducts seasonal repeated arthropod 
sampling. It already achieved a comprehensive understanding of 
biodiversity trends of arthropod assemblages within the native forest of 
Terceira (Borges et al., 2020, 2017; Lhoumeau and Borges, 2023; Mat-
thews et al., 2019) and inspired the development of new indicators for 
forest arthropod monitoring and conservation (Tsafack et al., 2023). 
However, accurate predictions of biodiversity changes are still needed 
for developing effective conservation strategies in this region.

The aim of this study is twofold. Firstly, it will compare how well 
Recurrent Neural Networks (RNNs) work with traditional modelling 
approaches. This will help to improve the field of ecological forecasting. 
Secondly, it will provide practical advice for conservation in the face of 
the global biodiversity crisis. The specific aims of the study are as fol-
lows: i) to test the power of RNNs in predicting arthropod assemblage 
dynamics through time using the SLAM Project dataset; and ii) to 
explore extinction and invasion scenarios to demonstrate how RNN 
models can inform effective conservation strategies.

2. Materials and methods

2.1. Study area Description

The Azores, an archipelago of nine volcanic islands in the North 
Atlantic Ocean, lie between 36◦ 45′N–39◦ 43′N and 24◦ 45′W–31◦ 17′W. 
With a temperate maritime climate, mild temperatures range from 14 ◦C 
in winter to 22 ◦C in summer, accompanied by high humidity and year- 
round rainfall that sustain lush landscapes (Cropper and Hanna, 2014). 
The islands’ volcanic soil supports diverse flora and fauna, including 
unique evergreen forests Fig. 1 (Elias et al., 2016; Keith et al., 2022) and 
numerous endemic species (Borges et al., 2022), particularly arthropods 
closely tied to native flora (Rego et al., 2019; Tsafack et al., 2022). This 
distinctive ecosystem faces significant conservation challenges due to 
high endemism, habitat degradation, and biological invasions 
(Fernández-Palacios et al., 2021; Ferreira et al., 2016; Florencio et al., 
2021).

2.2. Data collection

The long-term monitoring of arthropods in the Azores has been 
ongoing since July 2012. This initiative is linked to the EU-NETBIOME- 
ISLANDBIODIV project (Borges et al., 2018). It is well established in 
Terceira’s native forest fragments, which are the best preserved in the 
archipelago, but covers only 5.8 % of the island’s total area (Triantis 
et al., 2010) and are now limited to areas above 500 m due to historical 
human deforestation (Borges et al., 2017).

Ten permanent sampling sites measuring 50 m x 50 m have been set 
up within this forest (Fig. 2). Each site is equipped with a SLAM (Sea, 
Land, and Air Malaise) trap, a passive flight-intercept trap measuring 
110 × 110 × 110 cm. These traps are designed to capture arthropods 
from all directions (Skvarla et al., 2021).

The monitoring process involved a periodic seasonal collection with 
a target frequency of 90 days, allowing each sample to cover one season 
of the year. Arthropods were sorted into morphospecies by para-
taxonomists. One of the authors then identified most of them to the 
species level and classified based on their biogeographical origin 
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following the most recent checklist of Azorean arthropods (Borges et al., 
2022). Identification was focused on specific groups: Diplopoda (Chor-
deumatida, Julida), Chilopoda (Geophilomorpha, Lithobiomorpha, 
Scolopendromorpha), Arachnida (Araneae, Opiliones, Pseudo-
scorpiones), and Insecta (Archaeognatha, Blattaria, Coleoptera, Hemi-
ptera, Neuroptera, Psocodea, Thysanoptera, Trichoptera, Hymenoptera: 
Formicidae). The total abundance of each morphospecies was taken, 
including the distinction between adults and juveniles. Only the abun-
dance of adult arthropods was considered in the following analysis. For 
more detailed information about the sampling protocol and methodol-
ogy, refer to the previous data (Costa and Borges, 2021; Lhoumeau et al., 

2022a,b).

2.3. Data Pre-processing

The data was sourced from our previously published open-access 
databases (Costa and Borges, 2021; Lhoumeau et al., 2022a,b). The 
data underwent a meticulous process of cleaning and standardisation 
before being used in this study.

First, we selected a part of the dataset that represented a continuous 
time series since the start of the long-term monitoring. We considered all 
seasons from the summer 2013 (sampled in September 2013) to the 

Fig. 1. Typical view within the native forest of the Azores archipelago (Terra-Brava fragment on the island of Terceira).

Fig. 2. Map showing the location of the ten sampling sites involved in the long-term monitoring project on Terceira Island.
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spring 2023 (sampled in June 2023). This represented a total of 40 
seasons Sampling events less than 70 days or more than 110 days were 
excluded to ensure a sampling consistency (90 days ± 20 days) and 
arthropod abundances were then proportionally standardised to 90 
days. The deviations from the original temporal sampling design are 
primarily attributable to the adverse weather conditions that prevented 
the samples from being collected at the scheduled time.

After selecting sampling events, not all ten sites were available for 
each season, with a minimum of three sites being sampled in the autumn 
of 2020. To achieve a balanced sampling design, we used a bootstrap 
method previously developed by Lhoumeau & Borges, 2023. It consisted 
of an iterative process of seasonally selecting three sites and averaging 
the standardised abundances. Morphospecies with a total abundance of 
less than 100 individuals sampled over the 10 consecutive years were 
removed from the dataset to minimise the possible noise that rarely 
detected species could introduce in the analysis.

A final step in the data preparation process included a visual 
assessment of the time series, per species. Species with erratic variations 
over time were removed from the dataset, which resulted in discarding 
six morphospecies from the final dataset.

2.4. Data Description

The dataset used in this study represented a continuous time series of 
40 seasons covering a time frame from spring 2013 (sampled in June 
2013) to spring 2023 (sampled in June 2023). It consisted of adult 
abundance data for 39 arthropod morphospecies. Detailed information 
on each of these morphospecies can be found in the supplementary 
material (Table S1).

75 % of the data was used to train the algorithms (i.e. data from 
summer 2013 to autumn 2020, n = 30 seasons), while the remaining 25 
% (from winter 2021 to spring 2023, n = 10 seasons, hereafter called test 

window) of the data was reserved for testing and validation purposes. 
This standard split ensured that the model is trained on most of the data, 
while still having a significant amount available to evaluate its predic-
tive performance.

2.5. Model Descriptions

Three distinctive models were employed: Recurrent Neural Networks 
(RNN), Seasonal Autoregressive Integrated Moving Average (SARIMA), 
and Local Polynomial Regression (LOESS). The following Table 1 pro-
vides details about each model’s structure and parameters.

RNNs are a type of neural network designed for sequential data, 
using recurrent connections to capture complex temporal dependencies 
and patterns, making them effective for non-linear time series. SARIMA, 
a statistical model, combines autoregressive and moving average com-
ponents with differencing to address non-stationarity, explicitly 
modelling seasonal trends and periodic behaviours with high inter-
pretability. LOESS, a non-parametric regression method, fits local 
polynomial models to subsets of the data, allowing it to adapt flexibly to 
smooth, non-linear trends without assuming a global functional form.

2.5.1. RNN training and models fitting
The model training was conducted on a 64-bit Ubuntu 22.04.2 LTS 

platform with an Intel® Core™ i5-5250U CPU at 1.60 GHz, 4.0 GB of 
memory, and a Mesa Intel® HD Graphics 6000 GPU.

In the RNN training, the input data was a vector of arthropod 
abundance for a given time step T. The output was a similar vector at the 
next time step, T + 1. The model was trained over 1,000,000 epochs 
using a gradient descent optimizer.

For SARIMA fitting, we looped over each species abundance and 
transformed the data into a seasonal time series with a fixed seasonal 
parameter of 4. For each species, we selected the best SARIMA model 

Table 1 
Comprehensive overview of the models, highlighting their specifications.

RNN SARIMA LOESS

Model type Neural networks 
Non-parametric training 
Parametric model

Parametric Non-parametric regression

Mathematical 
formulation

y = f(x)Succession of 4 computational 
units: 
Gated Recurrent Unit (Cho et al., 2014): 
39 input, 100 outputs 
Gated Recurrent Unit: 100 inputs, 100 
outputs 
Fully connected layer: 100 inputs, 100 
outputs) 
Fully connected layer: 100 inputs, 39 
outputs 
Rectified Linear Unit (ReLU) functions 
are used as activation function within the 
fully connected layers

SARIMA(p, d, q)(P, D, Q, s) 
Where: 
p: The order of the non-seasonal autoregressive 
component 
d: The order of non-seasonal differencing, q: The 
order of the non-seasonal moving average 
component 
P: The order of the seasonal autoregressive 
component 
D: The order of seasonal differencing 
Q: The order of the seasonal moving average 
component 
s: The number of time steps in each season or the 
seasonal period

yt = f(xt) + εtWhere: 
f : The smooth function 
εt : The model residuals 

Design principle Process and model sequential data by 
capturing temporal dependencies using 
feedback loops.

Model time series data with seasonality and trends 
using a combination of autoregressive, differencing 
and moving average components.

Use of weighted local polynomial approximations to 
estimate the relationship between the independent 
variable and the dependent variable.

Modelling approach Data-driven and assemblage based Data-driven and species based Data-driven and species based
Underlying 

assumption
None Stationarity 

Linearity 
Independence 
Seasonality

Locality 
Independence 
No multicollinearity

Allow scenarios 
explorations

Yes No No

Programming 
language 
(implemented on)

Julia version 1.9.3 
(Bezanson et al., 2017)

R version 4.3.1 
(R Core Team, 2023)

R version 4.3.1 
(R Core Team, 2023)

Package used Flux.jl version 0.14.6 
(Innes, 2018)

forecast version 8.21.1 
(Hyndman and Khandakar, 2008)

stats version 4.3.1 
(R Core Team, 2023)

Examples of use (Aslan et al., 2022; Rew et al., 2019; 
Salinas et al., 2020)

(Kumar and Rao, 2023; Yap and Musa, 2023) (Regonda et al., 2005; Yang et al., 2023)
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using maximum likelihood estimation, conducting a search over all 
possible models. We prioritised the selection of non-stationary models. 
Any negative values returned were set to zero, as negative abundance 
has no ecological meaning.

Finally, for LOESS fitting, we looped over each species. For each 
species, we fit a polynomial surface using local fitting by the least-square 
method. Any negative values returned were set to zero, as they have no 
ecological meaning.

2.5.2. Models testing
The predictive ability assessment of the three models involves a 

stepwise process. The assessment of each species is done on an indi-
vidual basis, following the subsequent steps. The overall accuracy of a 
model is calculated as the mean of the accuracies for each species.

The first step is to use a specified model (RNN, SARIMA or LOESS) to 
predict the last 10 seasons for each species. This process results in a 10- 
dimensional abundance vector for each species.

In the second step, we compare the actual 10-dimensional abun-
dance vector from the test dataset with the predicted abundance vector 
calculated in step 1, using the following formula: 

Species accuracy = cos
(

Real data
̅̅̅̅̅̅→

,Model data
̅̅̅̅̅̅̅ →)

×

⎛

⎝1

−

⃒
⃒
⃒‖Model data
̅̅̅̅̅̅̅ →

‖ − ‖Real data
̅̅̅̅̅̅→

‖

⃒
⃒
⃒

‖Model data
̅̅̅̅̅̅̅ →

‖+ ‖Real data
̅̅̅̅̅̅→

‖

⎞

⎠

The comparison of the two vectors with this formula produced an output 
between 0 and 1 representing the degree of similarity between the two 
vectors of positive values. The criteria used in this formula are based on 
the collinearity of the vectors and their norm.

There were some exceptions. Given the expectation of seasonality in 
the abundance data, stationary SARIMA models were not evaluated. 
Similarly, if the RNN model displayed a constant abundance of zero, the 
accuracy for that species was not evaluated.

2.5.3. Model comparison
To compare the effectiveness of the three models, we combined our 

previous accuracy assessment with the computation of the Root-Mean- 
Square Error (RMSE) for each species in our dataset (Chai and Drax-
ler, 2014). Lower RMSE indicated a higher goodness of fit of a given 
model. The result of the RMSE calculation does not belong to a finite 
interval, which complicates its interpretation when applied to a single 
model. For this reason, it was only used here to compare models.

For each species, we calculated the RMSE between the actual data 
and the corresponding data predicted by the model under consideration 
within the full dataset. We then calculated the mean RMSE for each 
model, which gave us a single representative value for the fitting and 
predictive performance of the model across all species.

The RMSE and accuracy of the three models were compared using 
the Kruskal-Wallis test and pairwise using the Wilcoxon test.

2.6. Scenario Designs

The RNN model allows scenarios to be explored as the algorithm uses 
any input data to predict subsequent data, thereby facilitating the 
simulation of these scenarios within a given ecological assemblage. The 
possibilities for scenario exploration are therefore almost unlimited if 
the scenarios design fit the framework in which the model was trained.

Here, we examined two distinct types of ecological scenario: Single 
Species Extinction (SSE) and Single Species Invasion (SSI). The abun-
dance vector selected for scenario initialization corresponds to the final 
one in the dataset, reflecting the current situation in spring 2023. This 
vector is referred to as the “initial vector”.

In the SSE scenarios, we examined the effects of a single extinction 

within the assemblage. For these scenarios, the abundance of the 
selected species was gradually reduced, removing from 0 % to 100 % (in 
10 % increments) of the abundance in the initial vector. All species of the 
assemblage were tested.

In contrast, the SSI scenarios explored the impacts of an invasion by a 
single exotic species within the assemblage. In this scenario, the abun-
dance of the chosen exotic species was increased by a factor of 10 in the 
initial vector.

For both scenario types, we predicted the outcomes for the following 
40 seasons, equivalent to the next 10 years. To assess the implications of 
these scenarios on the species abundance distribution within the 
assemblage, we fit a GamBin model for each season, as proposed by 
Ugland et al. (2007) and Matthews et al. (2014). The Gambin alpha (α) 
parameter is a metric which describes the shape of a species abundance 
distribution (SAD). Low α values indicate distributions dominated by 
rare species (logseries-like), while high α values suggest a more even 
spread of abundances (lognormal-like). It serves as a flexible ecological 
indicator to compare community structures across different environ-
ments or disturbance gradients, providing insights into biodiversity and 
ecosystem changes with minimal computational complexity (Matthews 
et al., 2014).

Kruskall-Wallis tests were calculated to compare the mean value of 
each metric following an SSE or SSI. Pairwise Wilcoxon tests were also 
performed in the case of a significant result of a Kruskall-Wallis test in 
order to identify the species that responded differently.

3. Results

3.1. Modelling approach comparison

We observed that modelling approaches presented different RMSE 
values (Table 2, Kruskal-Wallis chi-squared = 17.301, df = 2, p-value <
0.05). We noticed a gradual decrease in goodness of fit from the RNN to 
the LOESS (Table 3). Our results indicated that the RNN model per-
formed exceptionally well, both in terms of fitting accuracy and a low 
standard deviation around this value. This result emphasises that the 
fitting accuracy is almost identical for all species in this assemblage. The 
SARIMA approach is the second best in terms of fit accuracy but had a 
standard deviation twice as high as the mean RMSE, indicating signifi-
cant differences in fitting accuracy between species. Finally, the LOESS 
approach showed the worst fitting accuracy and a significant standard 
deviation (almost twice the mean). This observation highlighted that 
this approach was unsuccessful in capturing the temporal variation in 
species abundance and showed significant inconsistencies in fitting ac-
curacy across the dataset.

Similarly, the forecasting accuracy showed statistically difference 
among the different modelling approaches (Table 2, Kruskal-Wallis chi- 
squared = 15.499, df = 2, p < 0.05). RNN and SARIMA showed similar 
performances, where the LOESS had a statistically significant lower 
accuracy (Table 3). The neural network displayed a greater ability to 
predict more species, with a total of 36, as compared to the SARIMA, 
which could only predict 31 species. Despite the differences in predic-
tion capabilities and mean accuracy values, all three modelling ap-
proaches exhibited the same standard deviation around the mean. This 
suggests that the forecasting accuracy of these models is relatively 
consistent among species considered in the assemblage, regardless of the 
approach used.

3.2. Scenarios explorations

3.2.1. Scenarios SSE
The results indicate that all SSE scenarios had a similar effect on the 

GamBin alpha parameter, maintaining equilibrium across seasons with 
no significant variation in value distribution (Fig. 3). Over the full pre-
dicted time series, none of the simulated extinction scenarios altered 
community structure (Table S2). However, some species, including 
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Cixius azoterceirae, Pseudophloeophagus tenax borgesi, and Anaspis proteus, 
exhibited perturbations distinct from others in the assemblage (Fig. 4). 
These fluctuations, however, consistently returned to equilibrium 
regardless of the scenario.

3.2.2. Scenarios SSI
The SSI scenarios revealed that no single scenario had a greater 

impact than the others, with all producing similar effects on the 
assemblage (Fig. 5, Kruskal-Wallis test, n = 160, χ2 = 2.86, d.f. = 3, p =
0.413). The GamBin alpha value showed no clear trend, indicating sta-
bility in assemblage composition over time, even in the presence of 
invasive species. Notably, the simulated invasions of Ommatoiulus mor-
eleti and Tenuiphantes tenuis caused deviations similar to those observed 
in the invasion scenario with Ectopsocus briggsi.

4. Discussion

In this study, we show the effectiveness and limits of RNN in fore-
casting the assemblage of arthropods in the native forest of the Azores 
archipelago. We compare their performance with traditional modelling 
approaches (SARIMA and LOESS) and evaluate the accuracy and reli-
ability in predicting biodiversity changes. Moreover, by exploring 
changes in arthropod assemblages within different scenarios, we 
emphasize that deep learning algorithms can serve as effective policy- 
making support tools.

Table 2 
Comparison of model RMSE and accuracy. RMSE evaluates the goodness of fit of a modelling approach across the entire dataset, and accuracy measures the forecast 
accuracy of a given model within the test windows. NA indicates that a particular modelling approach failed to fit or train with the species data.

Species name RMSE LOESS RMSE RNN RMSE SARIMA Accuracy LOESS Accuracy RNN Accuracy SARIMA

Acorigone acoreensis (Wunderlich, 1992) 14,43 4,42 8,52 78,14 % 90,36 % 87,05 %
Anaspis proteus Wollaston, 1854 11,37 4,89 9,67 28,28 % 52,01 % 67,31 %
Atheta aeneicollis (Sharp, 1869) 3,95 2,04 2,81 5,33 % 57,69 % 54,52 %
Calacalles subcarinatus (Israelson, 1984) 77,84 5,84 20,95 13,66 % 81,88 % 49,21 %
Catops coracinus Kellner, 1846 5,82 6,58 NA 0,00 % 28,03 % NA
Cinara juniperi (De Geer, 1773) 14,54 2,98 NA 20,17 % 33,17 % NA
Cixius azoterceirae Remane & Asche, 1979 334,01 43,01 229,40 65,87 % 93,90 % 79,29 %
Cyphopterum adscendens (Herrich-Schäffer, 1835) 70,07 8,02 26,31 17,99 % 81,15 % 59,50 %
Drouetius borgesi borgesi (Machado, 2009) 11,40 4,54 8,66 1,95 % 64,46 % 24,33 %
Ectopsocus briggsi McLachlan, 1899 6,06 NA 6,04 70,79 % NA 62,73 %
Elipsocus azoricus Meinander, 1975 4,35 2,81 4,08 56,05 % 55,05 % 22,53 %
Elipsocus brincki Badonnel, 1963 56,03 12,64 75,55 30,94 % 69,64 % 28,15 %
Eupteryx azorica Ribaut, 1941 NA NA 4,90 NA NA 43,21 %
Gibbaranea occidentalis Wunderlich, 1989 23,25 5,11 6,46 31,40 % 74,49 % 73,98 %
Hemerobius azoricus Tjeder, 1948 12,57 8,33 NA 34,74 % 66,08 % NA
Hoplothrips corticis (De Geer, 1773) 6,60 6,16 NA 22,55 % 29,64 % NA
Kleidocerys ericae (Horváth, 1909) 3,57 3,31 3,70 25,07 % 16,33 % 34,12 %
Lathys dentichelis (Simon, 1883) 16,28 3,14 8,16 33,18 % 76,56 % 62,00 %
Leiobunum blackwalli Meade, 1861 78,22 20,29 NA 27,90 % 41,33 % NA
Leucognatha acoreensis Wunderlich, 1992 4,31 3,53 5,09 47,39 % 35,91 % 52,86 %
Lithobius pilicornis pilicornis Newport, 1844 13,17 4,12 8,20 15,50 % 39,47 % 38,62 %
Macaroeris cata (Blackwall, 1867) 9,00 3,49 5,28 84,12 % 68,83 % 70,31 %
Monalocoris filicis (Linnaeus, 1758) 7,85 2,93 5,29 21,23 % 34,81 % 46,12 %
Notothecta dryochares (Israelson, 1985) 31,00 15,54 14,85 53,94 % 45,20 % 76,04 %
Ommatoiulus moreleti (Lucas, 1860) 3,15 2,10 2,96 6,40 % 43,96 % 11,44 %
Pinalitus oromii J. Ribes, 1992 52,55 10,06 21,53 58,71 % 96,97 % 89,42 %
Pisaura acoreensis Wunderlich, 1992 9,79 3,43 6,04 27,15 % 29,90 % 39,27 %
Pseudophloeophagus tenax borgesi 

Stüben, 2022
13,87 1,69 3,56 54,08 % 96,61 % 92,86 %

Rugathodes acoreensis Wunderlich, 1992 35,86 12,34 21,86 75,57 % 74,73 % 83,82 %
Savigniorrhipis acoreensis Wunderlich, 1992 19,25 7,03 19,29 50,23 % 68,29 % 56,21 %
Strophingia harteni Hodkinson, 1981 4,16 1,79 4,08 43,94 % 82,25 % 69,93 %
Tachyporus nitidulus (Fabricius, 1781) NA 1,96 NA NA 40,41 % NA
Tenuiphantes tenuis (Blackwall, 1852) 5,98 1,86 3,84 40,85 % 85,39 % 74,85 %
Trichopsocus clarus (Banks, 1908) 7,24 2,13 NA 53,62 % 53,81 % NA
Trigoniophthalmus borgesi 

Mendes, Gaju, Bach & Molero, 2000
98,55 23,23 NA 42,27 % 58,12 % NA

Trioza laurisilvae Hodkinson, 1990 41,08 14,37 34,88 71,98 % 83,08 % 55,91 %
Valenzuela flavidus (Stephens, 1836) 24,92 7,04 15,65 61,76 % 74,92 % 77,57 %
Walckenaeria grandis (Wunderlich, 1992) NA NA 3,22 NA NA 50,82 %
Zetha simonyi (Krauss, 1892) 12,21 3,99 9,15 26,32 % 43,34 % 46,68 %
Mean value 31,79 7,41 19,35 38,86 % 60,22 % 57,44 %
Standard deviation 57,45 8,05 41,48 22,93 % 22,25 % 21,00 %

Table 3 
Outputs of Wilcoxon pairwise comparison tests for RMSE and accuracy.

Model 1 Model 2 Data model 1 Data model 2 Statistic p-value Significance

Accuracy LOESS RNN 36 36 329 0.000243 ***
LOESS SARIMA 36 31 311 0.002 **
RNN SARIMA 36 31 594 0.657 ns

RMSE LOESS RNN 39 39 1152 6.02e-05 ***
LOESS SARIMA 39 39 904 0.154 ns
RNN SARIMA 39 39 468 0.003 **
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4.1. Recurrent Neural networks performed better in forecasting arthropod 
assemblage

Our observations indicate that the LOESS model oversimplifies the 
data, resulting in decreased goodness of fit and accuracy. This is 
attributed to both the model’s definition and the characteristics of the 
data. Designed for smoothing scatter plots (Avery, 2013; Cleveland and 
Loader, 1996), LOESS iteratively fits simple polynomial models to local 
data subsets (Cleveland, 1979). However, its reliance on local data 
structure makes it less effective with insufficiently dense data sets, such 
as ours. Despite extensive data cleaning, LOESS remains susceptible to 
outliers, which can be misconstrued as significant seasonal variations 
due to the lack of temporal definition in our dataset (Cleveland, 1979). 
Given the importance of temporal resolution for understanding species 
dynamics, using only a single season is not feasible due to data limita-
tions. Therefore, we suggest LOESS might be more suited for larger 
datasets, although obtaining such datasets can be challenging in ecol-
ogy, particularly for arthropods where diversity and complexity are 
prominent (Gallé et al., 2022).

On the other hand, SARIMA is specialized in forecasting seasonal 
time series (Dubey et al., 2021; Yap and Musa, 2023). Models appeared 

to fit our data better than LOESS and demonstrated good global mean 
accuracy. It was expected given the highly seasonal nature of arthropod 
abundance (Borges et al., 2017; Lhoumeau and Borges, 2023). SARIMA 
effectively captures both short-term and long-term dependencies in 
ecological data. One of SARIMA’s main advantages lies in its capability 
to handle non-stationary data common in ecological time series. 
Through differencing, it removes trends, making the data stationary and 
enabling more accurate modelling and forecasting (Ghysels et al., 2006). 
SARIMA can handle many seasonal factors and appear useful for ana-
lysing complicated ecological systems with many interacting factors. 
However, even though SARIMA has been successfully used in the study 
of animals and plants, it still only looks at different types of animals and 
plants on their own. This means that it does not take into account how 
they might interact with each other. This limitation arises from our 
exclusion of abiotic factors like temperature or relative humidity in the 
dataset, relying only on long-term arthropod survey data to predict 
future assemblage. Therefore, although SARIMA models are efficient in 
fitting our long-term dataset and accurately predicting future species 
abundance, their species-based approach limits their flexibility in 
application, especially for scenarios that explore assemblage responses 
to induced changes in the dataset.

Fig. 3. Box plots depicting the distribution of GamBin alpha values across four seasons: Spring, Summer, Autumn, and Winter. The x-axis indicates the percentage of 
species abundance data removed (SSE scenarios), while the y-axis shows the GamBin alpha values. The boxes represent the interquartile range (IQR) between the first 
quartile (Q1) and the third quartile (Q3), with horizontal lines inside the boxes denoting the median (50th percentile) alpha values. Whiskers extend to 1.5 times the 
IQR from Q1 and Q3, indicating the range of the data excluding outliers, while individual points outside the whiskers represent outliers. Higher alpha values suggest 
a more log-normal shape of the species abundance distribution curve.
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Fig. 4. Time series of the seasonal variation in GamBin alpha values following a given SSE. Each subplot corresponds to a different species, with the x-axis rep-
resenting the season number and the y-axis showing the GamBin alpha values, which indicate the shape of the species abundance distribution curves. Higher alpha 
values suggest a more log-normal shape of the species abundance distribution curve.
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Finally, the trained RNN model showed significantly better goodness 
of fit performance compared to LOESS and SARIMA models, while 
having a similar overall mean accuracy to SARIMA. This high goodness 

of fit was expected, as neural networks tend to overfit on training data 
(Vennerød et al., 2021). The low mean RMSE suggests that the RNN 
effectively captured complex temporal dynamics after training. RNNs 

Fig. 4. (continued).
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are good at capturing how things happen over time and the order in 
which they happen, which makes them useful for working out how 
ecological data is related to each other in complicated ways that change 
over time. The RNN model recognises patterns, dependencies, and re-
lationships within the training dataset of time series of all arthropods 
simultaneously. This accounts for how animals of the same species and 
different species interact, which helps forecasting how assemblage of 
animals will behave. Recurrent connections in RNNs allow the model to 
retain a memory of past observations. Models capture both long-term 
trends and cyclical patterns in arthropod abundance. A single RNN 
model is used to forecasting arthropod assemblages at each time step. It 
uses all the information it has had in the past to make an informed 
prediction. This holistic approach is especially beneficial in ecological 
studies, where interactions between different species play a crucial role 
in shaping arthropod communities.

4.2. Quality and size of datasets showed crucial importance

The results highlight the importance of dataset size and quality for 
accurate ecological modelling, regardless of the approach chosen −
SARIMA, LOESS or RNN. In all modelling approaches, data relevance, 
defined as ecologically meaningful data, is critical for model accuracy 
and interpretation. This focus on data quality is even more significant for 
exploratory approaches like RNN, which operate without a priori hy-
potheses. In such cases, the absence of predefined expectations makes it 
harder to identify whether the model outputs hold ecological relevance. 
A high-quality dataset helps mitigate this uncertainty, ensuring that the 
results are meaningful and grounded in ecological reality. Robust data 
serves as the foundation for reliable insights, particularly in hypothesis- 
free exploratory modelling.

The importance of dataset size is clear, as larger datasets offer more 
comprehensive training material for models, especially in capturing 
temporal patterns. Seasonal time series with visual consistency are 
correlated with better model performance. This suggests that the simple 
maths behind these series makes it easier to understand and predict the 
data. To achieve effective ecological forecasting, datasets with 
numerous time steps are required. Long-term biomonitoring programs 
that use consistent methods are crucial for creating adequate datasets. 
However, despite global collaborative efforts (Dornelas et al., 2018), 
data on this topic remain scarce.

Another consideration is the computational power required for 
developing these models, particularly artificial intelligence models 
(Christin et al., 2019). Nevertheless, recent advances in software and 
hardware have made these tools more accessible, expanding their po-
tential for conservation applications (Perkel, 2019; Roesch et al., 2023).

Finally, overfitting represents a common challenge when training 
machine learning models with limited datasets (Vennerød et al., 2021). 

This limitation may be attributed to the relatively limited size of the 
training dataset, which constrains the model’s capacity to generalise 
beyond the training data. The size of the datasets therefore represents a 
significant consideration. Indeed, preprocessing techniques, such as data 
cleaning and standardisation, often result in a reduction in the amount 
of data available. It is therefore recommended that a priori experiments 
be designed to generate a substantial amount of representative data in a 
relatively short period of time to mitigate the risk of overfitting.

4.3. Showcasing the usefulness and limits of RNN for the exploration of 
conservation scenarios

Efficient approaches for effective management are crucial consid-
ering the current global biodiversity crisis (Voskamp et al., 2023). 
Turney et al. (2020) emphasise the urgent need for user-friendly and 
time-efficient approaches. In this context, we aimed to illustrate the 
utility of RNN models for scientists, project managers and decision 
makers. The findings indicate that these models provide essential flex-
ibility in simulating diverse ecological scenarios. We highlight the po-
tential of these models as a systematic method for understanding the 
impact of SSE or SSI on the diversity of the assemblages.

In the SSE scenarios, the fact that there were no statistically signif-
icant impacts on the structure of the arthropod assemblage is promising. 
This indicates that it is resilient under the modelling conditions that 
have been considered. Although some species may exhibit distinct var-
iations, this could be attributed to the model’s ability to accurately 
predict species’ temporal dynamics.

The extinction scenarios presented in this study are relatively basic 
They assume a closed system and constant dynamics over time. It is 
important to note that the absence of statistically significant changes in 
the GamBin alpha metric used in this study does not necessarily imply 
the absence of other alterations. A more comprehensive analysis that 
includes metrics related to functional diversity, ecosystem service 
quality, or other interactions could provide further insights, but it is 
beyond the scope of this study.

However, the SSE scenarios involving the endemic Hemiptera spe-
cies Cixius azoterceirae are particularly interesting. In contrast to sce-
narios where species’ richness remains unchanged, the reduction in 
abundance of C. azoterceirae caused significant changes in the structure 
patterns of the assemblage. This means that the species is a key species in 
Terceira’s native forest areas. Its loss may lead to potential restructuring 
of ecological dynamics.

The study of SSI scenarios within the native forest fragments of 
Terceira provided different insights. Specifically, the non-significant 
changes in the GamBin alpha metric indicate a stable distribution. 
This observation presents new research questions concerning the 
ecological resilience and invasion resistance of the Azorean forest. The 

Fig. 4. (continued).
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native forest’s overall pristine condition and limited presence of exotic 
species may contribute to its resilience against significant changes in 
diversity metrics. The phenomenon described aligns with the biotic 
resistance hypothesis, which suggests that ecosystems with a high 
number of native species are more resistant to the establishment and 
proliferation of exotic species (Beaury et al., 2020). It can be argued that 
native forests are in a “lagged period” of invasion, as demonstrated by 
Liu et al. (2024). In their study, the authors concluded that native eco-
systems tend to experience a longer time between the initial invasion by 
non-native species and a significant change in the ecosystem.

However, previous literature documents increasing pressure from 
exotic species in this habitat (Borges et al., 2020). This suggests that 

external factors beyond community composition alone need to be 
considered to fully understand the nuances of invasion dynamics. The 
presence of exotic species may not have a significant impact on native 
biodiversity based solely on community composition. The complexity of 
these interactions is highlighted by the lack of significant changes in 
diversity metrics despite an increase in exotic species abundance. In our 
scenarios, exotic species may have light negative impacts, as the native 
ecosystem may possess resistance characteristics such as limited human 
disturbance, minimal introduction of exotic species, or specific biotic 
and abiotic features preventing alien species establishment. Alterna-
tively, similar species abundance distribution can arise from replace-
ment of indigenous species by exotic species which maintain overall 

Fig. 5. Time seriesof the seasonal variation in GamBin alpha values for three species (Ectopsocus briggsi, Ommatoiulus moreleti, and Tenuiphantes tenuis) and a control 
scenario with no invasion. The x-axis represents the season number, while the y-axis shows the GamBin alpha values, which indicate the shape of the species 
abundance distribution curves. Points are colored by season: Autumn (red), Spring (green), Summer (blue), and Winter (purple). Higher alpha values suggest a more 
log-normal shape of the species abundance distribution curve. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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species rank and relative abundances. This can have significant impacts 
on native forest arthropod communities and should not be neglected 
(Borges et al., 2020; Lhoumeau and Borges, 2023).

This aspect encourages a more comprehensive study of how species 
can spread by including outside factors in ecological models. To develop 
effective conservation and management strategies, it is needed to un-
derstand how outside factors influence their population. These data, 
when available, can be seamlessly integrated into RNN models.

One notable advantage of the use of RNN is their quick application, 
which provide almost instantaneous results once neural networks are 
trained and validated. This speed is crucial for making conservation 
decisions. In addition, the results are not only rapid but also directly 
interpretable, making it easier to take direct conservation measures. The 
models are versatile and users can configure the output type based on 
specific study objectives. This tool allows exploration of a lots of 
different scenarios, like the simultaneous decline of different species, 
focusing on functional groups and combining invasions and extinctions. 
However, it is essential to base simulation choices on relevant ecological 
arguments for the studied system.

Although RNN models raised as powerful conservation tool, they also 
have limitations. The accuracy of the model is dependent on the quality 
and representativeness of the training data. Researchers must carefully 
evaluate the quality and relevance of the data to ensure the reliability of 
the model’s predictions. In addition, it is crucial to understand the un-
derlying modelling framework to identify assumptions, limitations, and 
potential biases. This is particularly important due to the ’black box’ 
nature of RNN models, which can pose challenges in terms of 
interpretability.

Incorporating additional data or factors into the model requires fine- 
tuning the model. Researchers must weigh the impact of added 
complexity on model performance. Training RNN models, especially 
with large datasets, is time-consuming and demands computational re-
sources. Additionally, RNN models are deterministic, meaning that a 
given situation always produces the same result. Although this approach 
may be appropriate for straightforward ecological scenarios with limited 
variables, it raises concerns about the possibility of overlooking con-
founding factors that have not been considered.

5. Conclusion

Predicting the future in ecological systems remains challenging due 
to the numerous factors involved. While Recurrent Neural Network 
(RNN) models may not outperform classical SARIMA in data forecasting, 
they are distinguished by their flexibility in scenario explorations. Using 
data of arthropod assemblage within Terceira’s native forests, it showed 
a comprehensive modelling and indirect consideration of potential in-
teractions. This holistic approach positions RNN as an effective decision- 
making tool for species and spatial conservation. The model’s rapid 
results come with limitations: accuracy, data quality, awareness of the 
modelling framework and the challenges of interpretability.

As a call to action, our study demonstrates the practical use of RNN in 
a specific context and encourages researchers to explore its potential in 
diverse ecosystems. It can advance biodiversity conservation research 
and decision-making.
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Carvalho, R., Ferreira, M.T., López, H., Pérez Delgado, A.J., Otto, R., Fernández 
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